Moment Inequalities for Multinomial Choice with Fixed Effects

نویسندگان

  • Ariel Pakes
  • Jack Porter
چکیده

We propose a new approach to the semiparametric analysis of multinomial choice models with fixed effects and a group (or panel) structure. A traditional random utility framework is employed, and the key assumption is a group homogeneity condition on the disturbances. This assumption places no restrictions on either the joint distribution of the disturbances across choices or their within group (or across time) correlations. This work follows a substantial nonlinear panel literature (Manski 1987, Honore 1992, Abrevaya 1999, 2000) with the distinction that multiple covariate index functions now determine the outcome. A novel within-group comparison leads to a set of conditional moment inequalities that provide partial identifying information about the parameters of the observed covariate index functions, while avoiding the incidental parameter problem. We extend our framework to allow for: certain types of endogenous regressors (including lagged dependent variables and conditional heteroskedasticity), set-valued covariates, and parametric distributional information on disturbances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moment Inequalities for Semiparametric Multinomial Choice with Fixed Effects∗

We propose a new approach to identification of multinomial choice models with a group (or panel) structure. The utility for each choice is additively separable in a choice-specific fixed effect, a disturbance, and an index function of covariates and parameters. Observations in the same group are assumed to share the same fixed effects. Special cases of our semiparametric model include Chamberla...

متن کامل

Estimating Multinomial Choice Models Using Cyclic Monotonicity

This paper proposes a new identification and estimation approach to semi-parametric multinomial choice models that easily applies to not only cross-sectional settings but also panel data settings with unobservable fixed effects. Our approach is based on cyclic monotonicity, which is a defining feature of the random utility framework underlying multinomial choice models. From the cyclic monotoni...

متن کامل

Estimating Semi-parametric Panel Multinomial Choice Models using Cyclic Monotonicity∗

This paper proposes a new semi-parametric identification and estimation approach to multinomial choice models in a panel data setting with individual fixed effects. Our approach is based on cyclic monotonicity, which is a defining feature of the random utility framework underlying multinomial choice models. From the cyclic monotonicity property, we derive identifying inequalities without requir...

متن کامل

Division of the Humanities and Social Sciences California Institute of Technology Pasadena, California 91125 Estimating Multinomial Choice Models Using Cyclic Monotonicity

This paper proposes a new identification and estimation approach to semi-parametric multinomial choice models that easily applies to not only cross-sectional settings but also panel data settings with unobservable fixed effects. Our approach is based on cyclic monotonicity, which is a defining feature of the random utility framework underlying multinomial choice models. From the cyclic monotoni...

متن کامل

Identifiability of Finite Mixtures of Multinomial Logit Models with Varying and Fixed Effects

Unique parametrizations of models are very important for parameter interpretation and consistency of estimators. In this paper we analyze the identifiability of a general class of finite mixtures of multinomial logits with varying and fixed effects, which includes the popular multinomial logit and conditional logit models. The application of the general identifiability conditions is demonstrate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014